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Summary
Background Loss-of-function mutations in GRN cause frontotemporal lobar degeneration (FTLD). Patients with GRN 
mutations present with a uniform subtype of TAR DNA-binding protein 43 (TDP-43) pathology at autopsy 
(FTLD-TDP type A); however, age at onset and clinical presentation are variable, even within families. We aimed to 
identify potential genetic modifiers of disease onset and disease risk in GRN mutation carriers.

Methods The study was done in three stages: a discovery stage, a replication stage, and a meta-analysis of the discovery 
and replication data. In the discovery stage, genome-wide logistic and linear regression analyses were done to test the 
association of genetic variants with disease risk (case or control status) and age at onset in patients with a GRN 
mutation and controls free of neurodegenerative disorders. Suggestive loci (p<1 × 10–⁵) were genotyped in a replication 
cohort of patients and controls, followed by a meta-analysis. The effect of genome-wide significant variants at the 
GFRA2 locus on expression of GFRA2 was assessed using mRNA expression studies in cerebellar tissue samples 
from the Mayo Clinic brain bank. The effect of the GFRA2 locus on progranulin concentrations was studied using 
previously generated ELISA-based expression data. Co-immunoprecipitation experiments in HEK293T cells were 
done to test for a direct interaction between GFRA2 and progranulin.

Findings Individuals were enrolled in the current study between Sept 16, 2014, and Oct 5, 2017. After quality control 
measures, statistical analyses in the discovery stage included 382 unrelated symptomatic GRN mutation carriers and 
1146 controls free of neurodegenerative disorders collected from 34 research centres located in the USA, Canada, 
Australia, and Europe. In the replication stage, 210 patients (67 symptomatic GRN mutation carriers and 143 patients 
with FTLD without GRN mutations pathologically confirmed as FTLD-TDP type A) and 1798 controls free of 
neurodegenerative diseases were recruited from 26 sites, 20 of which overlapped with the discovery stage. No genome-
wide significant association with age at onset was identified in the discovery or replication stages, or in the meta-
analysis. However, in the case-control analysis, we replicated the previously reported TMEM106B association 
(rs1990622 meta-analysis odds ratio [OR] 0·54, 95% CI 0·46–0·63; p=3·54 × 10–¹⁶), and identified a novel genome-
wide significant locus at GFRA2 on chromosome 8p21.3 associated with disease risk (rs36196656 meta-analysis 
OR 1·49, 95% CI 1·30–1·71; p=1·58 × 10–⁸). Expression analyses showed that the risk-associated allele at rs36196656 
decreased GFRA2 mRNA concentrations in cerebellar tissue (p=0·04). No effect of rs36196656 on plasma and CSF 
progranulin concentrations was detected by ELISA; however, co-immunoprecipitation experiments in HEK293T cells 
did suggest a direct binding of progranulin and GFRA2.

Interpretation TMEM106B-related and GFRA2-related pathways might be future targets for treatments for FTLD, but 
the biological interaction between progranulin and these potential disease modifiers requires further study. 
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Introduction
Frontotemporal lobar degeneration (FTLD) represents 
a collection of neurodegenerative diseases accounting 
for 5–10% of all patients with dementia and 10–20% 
of patients with onset of dementia before 65 years 
of age.1 Three clinical variants of FTLD have been 
described: a behavioural variant and two language 
variants, the non-fluent and the semantic variants 
of primary progressive aphasia. The most common 
pathological subtype of FTLD is characterised by 
aggregates of the TAR DNA-binding protein 43 (TDP-43; 
FTLD-TDP).2,3 Four different FTLD-TDP pathological 
subtypes have been defined based on the morphology 
and anatomical distribution of TDP-43 pathology 
(types A–D).2

Mutations in GRN are the second most common 
genetic cause of FTLD-TDP, accounting for 5–20% of 
FTLD cases with positive family history.4–6 All known 
heterozygous pathogenic GRN mutations cause disease 

through a uniform disease mechanism: the loss of 
50% of functional progranulin, leading to haplo
insufficiency.4 Additionally, all patients with GRN 
mutations present with FTLD-TDP type A at autopsy.2 
Despite this uniform disease mechanism and patho
logical presentation, according to clinical findings, the 
age at symptom onset and clinical phenotype associated 
with GRN mutations are variable, even within the same 
family, and the penetrance of GRN mutations is not 
complete, even at old age.7,8 A genome-wide association 
study (GWAS) from 20109 reported variants in 
TMEM106B as risk factors for FTLD-TDP, and 
subsequent studies10,11 established TMEM106B as a 
modifier of disease risk in individuals with GRN 
mutations.9–11 Identification of additional genetic 
modifiers of GRN-associated FTLD could lead to 
improved genetic counselling, and could help to 
identify potential new targets for disease-modifying 
treatments. We therefore aimed to identify additional 

TMEM106B and GFRA2 might also provide opportunities to select and stratify patients for future clinical trials and, 
when more is known about their potential effects, to inform genetic counselling, especially for asymptomatic 
individuals.
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Research in context

Evidence before this study
Mutations in GRN are an important cause of frontotemporal 
lobar degeneration (FTLD) with TAR DNA-binding protein 
43 (TDP-43) pathology (FTLD-TDP). Pathogenic mutations are 
heterozygous and cause disease through a uniform mechanism 
leading to a 50% loss of functional progranulin. We searched 
PubMed on Jan 30, 2018, for the terms “GRN” OR “PGRN” AND 
“onset age variability”, without language restrictions and 
including all publications from database inception. We identified 
seven studies, which reported large variability in age at onset 
among GRN mutation carriers, suggesting that genetic 
modifiers might be in part responsible for the phenotypic 
presentation. We also searched PubMed on Jan 30, 2018, for the 
terms “GRN” OR “PGRN” AND “genome-wide association 
study”, without language restrictions and including all 
publications from database inception. We identified one 
previous study that focused on FTLD-TDP, which included 
80 GRN mutation carriers in a genome-wide association 
analysis. That study identified TMEM106B as a risk factor in 
patients with FTLD-TDP, with a particularly strong effect in GRN 
mutation carriers, suggesting an effect of TMEM106B variants 
on disease penetrance in individuals with GRN mutations. We 
found no other genome-wide association studies in GRN 
mutation carriers done before the current study.

Added value of this study
Through international collaborations, our cohort of patients 
with GRN mutations was five times larger than that used in the 
previous genome-wide association study. Using a two-stage 
association study, we confirmed the TMEM106B locus as the 
most important modifier of disease risk in GRN mutation 
carriers and we were able to estimate that GRN carriers of the 
TMEM106B protective haplotype (tagged by the G allele of 
rs3173615) have 50% lower odds of developing disease 
symptoms than carriers of the non-protective haplotype. We 
also newly identified the GFRA2 locus on chromosome 8p21.3 
as a potential genome-wide significant modifier of disease risk 
in patients with GRN mutations. The lead variant at the GFRA2 
locus (rs36196656) is located within GFRA2 intron 3 and 
affected the expression profile of GFRA2. Functional studies also 
showed that progranulin binds to GFRA2 in vitro.

Implications of all the available evidence
The identification of genetic variants in TMEM106B and GFRA2 
as modifiers of disease risk in patients with GRN mutations 
provides new avenues towards biomarker discovery and the 
development of therapeutic approaches for patients with FTLD. 
These genetic variants might further inform genetic counselling 
in families and could aid in future clinical trial designs.
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genetic modifiers in GRN mutation carriers through 
genome-wide association analyses in unrelated 
symptomatic patients with GRN mutations.

Methods
Study design and participants
The study was done in three stages: a discovery stage, 
a replication stage, and finally a meta-analysis of 
the discovery and replication data. Participants were 
recruited at 40 international clinical or pathological 
research centres in Italy, the USA, France, Spain, the UK, 
Canada, the Netherlands, Sweden, Australia, Denmark, 
Poland, and Germany between Sept 16, 2014, and 
Oct 5, 2017 (appendix). No restriction in terms of age, 
sex, or race was applied to the initial selection; however, 
the statistical analyses only included white individuals to 
limit genetic heterogeneity (appendix). Identification of 
GRN mutations and assessment of TDP-43 pathological 
subtype was done at each individual site. In the discovery 
stage, we obtained DNA from 33 centres from sympto
matic GRN carriers from the USA, Canada, Europe, and 
Australia, and healthy controls from Italy and Spain. We 
also obtained genetic data from 1986 controls free from 
neurodegenerative diseases from the Genome-Wide 
Association Study of Parkinson Disease: Genes and 
Environment from the Center for Inherited Disease 
Research (CIDR) consortium (NCBI dbGaP phs000196.
v3.p1;12 hereafter referred to as the CIDR dataset and 
considered one site; appendix). Additional and non-
overlapping patients and controls free from neuro
degenerative diseases were recruited for the replication 
stage from 26 centres, 20 of which overlapped with the 
discovery stage and six of which were newly identified 
(appendix). 

Age at onset was defined as the age at which the 
first disease symptoms appeared, including initial 
cognitive dysfunction in judgment, language, or memory, 
or changes in behaviour or personality. Written informed 
consent for genetic studies was given by patients and 
controls who were alive, or by next of kin at the time of 
death for autopsy material, with approval from each 
institution’s institutional review board.

Procedures and statistical analysis
Genotyping and quality control procedures for the 
discovery stage are described in detail in the appendix. 
Genome-wide association analyses, using logistic and 
linear regressions, were done to test the association 
of genetic variants with patient or control status 
(disease risk) and age at onset, respectively, under an 
additive model for allele effects and adjusting for age, 
sex, and the first two principal components of genetic 
variation when appropriate (appendix). Minor alleles 
were treated as effect alleles. As exploratory analyses, 
association of variants with absence or presence of 
specific first clinical symptoms (memory, behaviour, or 
language impairment) or presence of parkinsonism at 
any time during the course of the disease was tested 
among patients by logistic regression adjusting for age, 
sex, and the first two principal components (appendix). 
Association of previously reported putative genetic 
modifier variants in known neurodegenerative disease 
genes with disease presentation and age at onset were 
also established.

Lead variants or a proxy associated at a p value of less 
than 1 ×    10–⁵ with disease risk or age at onset in the 
discovery stage were selected for the replication stage. 
Genotyping and quality control measures for this stage 
are described in the appendix. Association analyses were 
done using logistic or linear regressions to replicate 
association of genetic variants associated suggestively 
with disease risk or age at onset, adjusting for age and sex 
when appropriate under an additive model. 36 variants at 
34 loci were analysed in the replication stage, and thus a 
Bonferroni-corrected significance threshold of p less than 
1·5 × 10–³ was used in this stage. A meta-analysis of the 
discovery and replication results was done under a fixed-
effects model. We also calculated I² heterogeneity statistics 
to assess the degree of heterogeneity of the effects in the 
discovery and replication stages; for single nucleotide 
polymorphisms with an I² value suggestive of moderate or 
high heterogeneity (I²>0·3) we also did a random effects 
meta-analysis to verify that conclusions regarding 
associations would not change under this model. Using 
the discovery data, a test of interaction was done for the 

Discovery stage Replication stage

GRN mutation carriers 
(n=382)

Controls (n=1146) GRN mutation carriers 
(n=67)

Controls (n=1798) GRN-negative FTLD-TDP 
type A (n=143)

Age (years)

At onset 60·0 (55·0–66·0) NA 59·0 (55·0–65·0) NA 70·0 (62·0–76·8)

At death 66·0 (61·0–73·0) NA 65·0 (60·8–71·0) 77·0 (64·0–81·0) 79·0 (68·0–85·0)

At last healthy visit NA 62·0 (56·0–67·0) NA 62·0 (53·0–71·0) NA

Sex

Women 211 (55%) 630 (55%) 35 (52%) 853 (47%) 61 (43%)

Men 171 (45%) 516 (45%) 32 (48%) 945 (53%) 82 (57%)

Data are median (IQR) or number (%). NA=not applicable. FTLD-TDP=frontotemporal lobar degeneration with TAR DNA-binding protein 43.

Table 1: Demographics
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genome-wide significant loci found to modify disease risk 
in GRN mutation carriers. Specifically, using the top 
variants from TMEM106B and GFRA2, a logistic 
regression model was fitted with both variant genotypes 
and their multiplicative effect as predictors of risk, and a 

likelihood ratio test of the multiplicative term was done to 
assess the effect of the variant interaction on disease risk.

To establish the effect of the lead variant at the GFRA2 
locus on brain GFRA2 mRNA expression, quantitative 
real-time PCR was done in cerebellar tissue samples 
from AA and CC carriers from the Mayo Clinic brain 
bank (appendix). The effect of the lead variant on 
progranulin concentrations in plasma and CSF was 
assessed by Taqman genotyping of individuals for whom 
concentrations of progranulin were previously measured 
by ELISA,13 by linear regression adjusting for age and 
sex. Whole-genome sequence data from control indi
viduals from the Mayo Clinic biobank were used to 
estimate linkage disequilibrium measures (Dʹ and r²) 
between all variants at the GFRA2 locus and the 
lead variant.

To study the direct interaction between progranulin 
and GFRA2, HEK293T cells were co-transfected with 
GFRA2 and progranulin. Cell lysates were collected and 
subjected to immunoprecipitation (appendix).

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 
access to all the data in the study and had final 
responsibility for the decision to submit for publication.

Results
In the discovery stage, we obtained DNA samples from 
493 patients carrying 120 different loss-of-function 
mutations in GRN and 505 controls from Italy and Spain. 
We also obtained genetic data from 1986 controls from 
the CIDR dataset (appendix). Three mutations were 
identified in more than 20 patients: Thr272Serfs*10 
(n=97), Arg493* (n=35), and the chromosomal mutation 
709-1G>A (n=31). After quality control, the discovery stage 
included 382 unrelated symptomatic GRN mutation 
carriers and 1146 unrelated controls. Patients had a 
median age at onset of 60·0 years (IQR 55·0–66·0) and 
211 (55%) were women (table 1). Large variability in the 
age at onset was detected even among patients with the 
same mutation. Among patients with the most frequent 
mutation, Thr272Serfs*10, ages at onset ranged from 
39 years to 82 years, with a median age at onset of 
62·0 years (IQR 56·0–66·0). Genome-wide logistic 
regression analysis in the discovery stage identified an 
expected significant association with variants at the GRN 
locus on chromosome 17q21 (figure 1). Haplotype analyses 
using 16 variants around GRN showed that this 
association was driven by distantly related individuals 
sharing founder haplotypes corresponding to the most 
common mutations in our cohort. Within the quality 
control dataset, we estimated the presence of a shared 
haplotype in 22 (100%) of 22 patients carrying the 
709-1G>A mutation and in 63 (81%) of 78 patients 
carrying the Thr272Serfs*10 mutation, whereas 18 (60%) 

N
DU

FS
1

C3
or

f5
5

BD
H1

GR
ID

2
LO

C2
85

50
1

PJ
A2

ZN
F6

08
SL

IT
3

GM
DS

KI
F1

3A TM
EM

10
6B

ST
AR

D3
N

L
BA

IA
P2

L1
LH

FP
L3

SL
C1

3A
4

N
EI

L2
GF

RA
2

SM
AR

CA
2

PA
LM

2
GD

F1
0

PR
R5

L
AC

TN
3

KL
F1

2

OD
Z4

N
ED

D1

RG
S6

GR
N

SY
T4

AT
P9

B

FL
J3

35
81

M
YC

L1

0

5

10

15

20

25

0

5

10

15

20

25

N
eg

at
iv

e 
lo

g 10
 - 

tr
an

sf
or

m
ed

 p
 v

al
ue

B

A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718
19

20
21

22

Chromosome

N
eg

at
iv

e 
lo

g 10
 - 

tr
an

sf
or

m
ed

 p
 v

al
ue

ZN
F8

04
A

TN
IK

C6
or

f1
1

CO
L2

8A
1

SH
FM

1
PR

KA
G2 ST

18
ST

M
N

2

SY
T1

2

ZB
TB

4 GR
B2

SM
CH

D1
JA

G1
RR

BP
1

Figure 1: Manhattan plots of the case-control (A) and age at onset (B) analyses in the discovery phase
The red lines represent the genome-wide significance threshold (p<5 × 10⁻⁸). The blue line denotes p=1 × 10⁻⁵. 
Green dots represent the variants that were included in the replication stage. At some loci a proxy of the top 
variant was selected for genotyping in the replication stage.
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of 30 patients with Arg493* were estimated to carry one 
of two founder haplotypes. We also detected the known 
TMEM106B locus, including 93 variants with genome-
wide significant association and in strong linkage 
disequilibrium (Dʹ>0·8, r²>0·6) with the lead variant 
rs7791726 (odds ratio [OR] 0·53, 95% CI 0·44–0·64; 
p=1·53 × 10–¹⁰; figure 1; appendix). In particular, rs7791726 
was in strong linkage disequilibrium with the previously 
reported TMEM106B variants rs1990622, rs3173615, and 
rs1990620 (Dʹ=1, r²>0·8). In the discovery cohort, 
163 (14%) of 1146 controls were homozygous carriers 
of the rare allele rs3173615, whereas only four (1%) of 
382 were homozygous in the GRN mutation carriers 
cohort. No additional genome-wide significant association 
signals were detected; however, 29 additional loci showed 
suggestive association (p<1 × 10–⁵; figure 1; appendix). 
After adjustment with the lead variant on chromosome 
17q21 (rs141568868), these suggestive associations did not 
change substantially.

A separate genome-wide linear regression analysis of 
onset age within the patient cohort did not identify any 
genome-wide significant association signals; however, 
14 loci showed suggestive associations (p<1 × 10–⁵; figure 1, 
table 2; appendix). Since only the wild-type copy of GRN 
is expressed in patients with GRN mutations, we 
analysed the effect of rs5848 located in the 3' untranslated 
region of GRN, comparing patients homozygous for the 
common (C) and rare (T) alleles at this marker; no 
significant association with onset age was noted (p=0·36). 
No association with age at onset was detected with 
rs3173615 at the TMEM106B locus (beta –0·12, 
95% CI –1·59 to 1·35; p=0·87).

The replication stage of the association study, which 
included 210 patients (67 symptomatic GRN mutation 
carriers and 143 patients without known mutations in 
GRN and C9ORF72 with pathologically confirmed 
FTLD-TDP type A) and 1798 controls (table 1), identified 
significant association at the Bonferroni-corrected level 
of p less than 1·5 ×   10–³ for two loci nominated by the 
case-control discovery GWAS (TMEM106B and GFRA2; 
table 3). None of the loci nominated through the 
discovery GWAS of age at disease onset were significant 
after Bonferroni correction (table 2). The strongest signal 
in the case-control analysis was at the TMEM106B locus 
with marker rs3173615 (OR 0·53, 95% CI 0·42–0·67; 
p=8·97 × 10–⁸;  table 3). The lead variant at the second 
locus was rs36196656 located within intron 3 of GFRA2 
(MAFpatients=0·44, MAFcontrols=0·35; OR 1·46, 95% CI 
1·18–1·80; p=0·00044). In the meta-analysis of discovery 
and replication stages, both the TMEM106B and GFRA2 
loci achieved genome-wide significance (TMEM106B, 
rs3173615, OR 0·54, 95% CI 0·47–0·63; p=3·78 × 10–¹⁶; 
GFRA2, rs36196656 OR 1·49, 95% CI 1·30–1·71; 
p=1·58 × 10–⁸; table 3). For both loci, the I2 heterogeneity 
statistic showed no heterogeneity of effects between the 
two stages. No other loci had a p value less than 5 × 10–⁸ in 
the meta-analysis. For loci showing high heterogeneity 
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under a fixed-effects model, a meta-analysis using a 
random-effect model was done and no substantial 
differences in association were detected compared with 
the fixed-effects model. Conditional analysis adjusted for 
the TMEM106B variant rs3173615 in the discovery stage 
had no effect on the association at the GFRA2 variant 
rs36196656 (OR 1·54, 95% CI 1·28–1·85; p=5·80 × 10–⁶). 
Moreover, tests of interactions between these variants 
provided no evidence for interaction effects on disease 
risk (pinteraction>0·1; data not shown), suggesting that the 
effect of the GFRA2 variant on disease risk is not 
modified by the TMEM106B genotype that a person 
carries, and vice versa. 

At the putative novel GFRA2 locus, both patients with 
GRN mutations and those with FTLD-TDP type A 
without known mutations contributed to the observed 
association in the replication stage (appendix). A 
significant association was detected when only patients 
with GRN mutations were included (OR 1·69, 95% CI 
1·19–2·40; p=0·0031; appendix); however, patients with 
FTLD-TDP type A showed a comparable allele frequency 
and OR at rs36196656 (OR 1·40, 95% CI 1·08–1·82; 
p=0·011; appendix). 

To identify possible functional variants at the newly 
identified putative GFRA2 locus, we analysed publicly 
available data and whole-genome sequence data from 
959 control individuals from the Mayo Clinic biobank, 
which showed two single nucleotide polymorphisms 
(rs144692383 and rs150047054) and a deletion of three 
base pairs (rs36144451) to be in strong linkage 
disequilibrium (r²>0·8) with the lead variant rs36196656 
(figure 2; appendix). All four variants are located in close 
proximity within GFRA2 intronic regions: intron 3 of 
GFRA2 transcript variant A (NM_001495), intron 2 of 
GFRA2 transcript variant B (NM_001165038), and 
intron 1 of GFRA2 transcript variant C (NM_001165039), 
depending on alternative splicing at the GFRA2 locus 
(figure 2). Several of these variants are predicted to affect 
transcription factor binding sites and histone marks and 
they all are expression quantitative loci for GFRA2 in 
testis (p=1·80 × 10–¹⁴ according to the GTex database). 
Indeed, GFRA2 RNA expression analyses in cerebellar 
tissue samples from individuals with rs36196656 CC 
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Figure 2: GFRA2 genetic locus and expression studies
(A) The top panel presents the GFRA2 gene and its three GFRA2 transcripts. Exons 

are represented as small black boxes and non-coding regions as a straight line. 
The location of the three variants in strong linkage disequilibrium (black arrows) 

with rs36196656 (red arrow) are represented as blue stars across the different 
GFRA2 transcripts. The GFRA2 locus zoom plot is presented on the bottom panel. 
Each dot represents a genotyped (triangle) or imputed (circle) variant. The purple 

dot is the most significant variant (rs36196656) among variants in the region. 
Dots are coloured from red to blue according to their r² value, showing their 

degree of linkage disequilibrium with rs36196656 (grey indicates an r² of zero). 
The light blue line shows the estimated recombination rate. (B) Cerebellar mRNA 
expression of GFRA2 transcripts stratified by rs36196656 genotype. All values are 

normalised to two reference genes and within each assay, expression is shown 
normalised to homozygous rs36196656-CC carriers. The median (horizontal bar) 

and IQR (whiskers) is presented for each group.
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(n=24) and AA (n=24) genotypes available from the 
Mayo Clinic brain bank showed substantial variability 
in expression among individuals, but confirmed a 
40% reduction in all GFRA2 transcripts in brains of 
homozygous carriers of the risk allele (AA) compared 
with CC carriers, which was significant when analysing 
all GFRA2 variants (p=0·04) or variant A individually 
(p=0·01; figure 2). GFRA2 transcript variant A was 
consistently the predominant transcript expressed in 
cerebellar tissue (appendix), and no significant difference 
in the ratio of GFRA2 transcripts (A, B, and C) was noted 
between AA and CC carriers (data not shown). Since the 
potential functional variant or variants underlying the 
observed association could also be less frequent than the 
lead variant, we further identified all variants with D' 
greater than 0·8, which resulted in an additional 
130 single nucleotide variants, none of which were 
coding (data not shown).

To assess a potential direct effect of GFRA2 markers on 
progranulin expression in plasma and CSF, we did a 
linear regression adjusting for age and sex, which showed 
that rs36196656 is not associated with progranulin 
concentrations in plasma or CSF in 345 individuals 
(p=0·61 and p=0·67 respectively; appendix). We next 
hypothesised that GFRA2 might directly interact with 
progranulin and serve as a receptor for progranulin. 
Using transient overexpression of untagged progranulin 
and GFRA2 in HEK293T cells, immunoprecipitation 
of GFRA2 pulled down progranulin in cell lysates. 
Reciprocally, immunoprecipitation of progranulin pulled 
down GFRA2 (figure 3).

Discussion
Using an unbiased two-stage GWAS in what is, to our 
knowledge, the largest available collection of unrelated 
patients with FTLD with pathogenic GRN mutations, we 
identified two association signals: one at the known 
TMEM106B locus and one at a novel putative locus 
encompassing GFRA2. GRN mutations are a rare cause 
of FTLD and, despite the international nature of our 

collaboration, we were limited by the number of GRN 
carriers we were able to identify. In the discovery stage, 
we therefore relied on the uniform loss-of-function 
disease mechanism associated with pathogenic GRN 
mutations and combined genetic analysis of patients 
with 120 distinct mutations. In the replication stage, 
newly identified GRN mutation carriers were combined 
with patients with FTLD-TDP type A with unknown 
genetic cause, who are pathologically indistinguishable 
from GRN carriers and possibly share disease mech
anisms. Using this approach, genome-wide significant 
associations were detected when symptomatic patients 
were compared with healthy controls, suggesting that 
TMEM106B and GFRA2 are able to modify disease risk. 
Moreover, the allele at the lead GFRA2 variant 
(rs36196656) associated with reduced disease risk 
correlated with increased brain mRNA expression of 
GFRA2 transcripts.

Our study confirms TMEM106B as the strongest 
modifier of disease risk in GRN mutation carriers and 
patients with GRN-negative FTLD-TDP type A. Published 
studies had already established that variants associated 
with the TMEM106B risk haplotype correlate with 
increased expression of TMEM106B9 and increases in the 
amount of TMEM106B are detrimental to lysosomal 
health and function.14–16 Among the variants in strong 
linkage disequilibrium, several functional candidates 
have been reported, including rs3173615 encoding 
TMEM106B Thr185Ser and the non-coding variant 
rs1990620, which is suggested to affect higher-order 
chromatin architecture at the TMEM106B locus.16,17 We 
estimated that GRN carriers of the TMEM106B protective 
haplotype (tagged by the G allele of rs3173615) have about 
50% lower odds of developing disease symptoms 
compared with carriers of the non-protective haplotype. 
Indeed, despite a population frequency of 14% in our 
control discovery cohort, only 1% of unrelated 
symptomatic patients were homozygous rs3173615 GG 
carriers, suggesting that many GRN mutation carriers 
who are also homozygous for the protective TMEM106B 
haplotype do not have symptoms. This is an important 
finding for a disease gene once thought to be nearly fully 
penetrant and prompts the important question as to 
whether TMEM106B genotyping should be done routinely 
when GRN genetic testing is requested, or whether it 
should at least be discussed as a crucial component of 
predictive GRN genetic testing and counselling protocols, 
especially in asymptomatic individuals.

The GFRA2 locus was identified as a second 
independent potential modifier of disease risk, with a 
significant association in the meta-analysis of our 
combined discovery and replication stages. Both GRN 
carriers and patients with FTLD-TDP type A without 
mutations contributed to the observed association. 
Expression data points to a potential disease mechanism 
in which risk-associated variants at the GFRA2 locus 
decrease brain mRNA expression of GFRA2. Whether 
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Figure 3: Interaction of progranulin and GFRA2
GFRA2 and progranulin immunoblots are displayed after immunoprecipitation with anti-GFRA2 antibody (A) and 
anti-progranulin antibody (B) from cell lysates of HEK293T cells co-transfected with untagged GFRA2 and untagged 
progranulin or vector control. 5% input=5% of the total amount of cell lysates used for immunoprecipitation.
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these variants similarly affect GFRA2 protein expression 
remains to be tested. GFRA2 is the preferential 
coreceptor for neurturin, one of four members of the 
GDNF family ligands with an important role in neuronal 
differentiation, proliferation, and survival.18 Neurturin 
further requires the transmembrane signalling receptor 
tyrosine kinase RET to assemble as a multi-component 
receptor system. Upon binding of neurturin to GFRA2, 
RET activates downstream signalling pathways including 
mitogen activated protein kinase, extracellular signal-
regulated kinase 1/2, and AKT. In vitro, we obtained 
evidence of a direct binding of progranulin to GFRA2, 
which could suggest that GFRA2 might be a signalling 
receptor for progranulin; however, future experiments 
both in vitro and in vivo will be needed to establish the 
functional consequences of this interaction. If GFRA2 is 
confirmed to serve as a receptor for progranulin, one 
possible future therapeutic avenue could be to enhance 
their binding, for example by using small molecules or 
compounds that target the progranulin-GFRA2 
interaction. Another possibility, which is not mutually 
exclusive, is that progranulin and GFRA2 are part of 
independent neurotrophic signalling pathways. In this 
scenario, reduced neurotrophic signalling in GFRA2 risk 
allele carriers might facilitate the development of 
symptoms in GRN mutation carriers, who are already 
vulnerable to neuronal loss as a result of reduced 
neurotrophic progranulin signalling. A loss of 
neurotrophic GFRA2 signalling might also affect patients 
with FTLD-TDP type A without GRN mutations, 
especially since GFRA2 expression seems to be enriched 
in the frontal and motor cortices, which are highly 
vulnerable regions in FTLD (appendix). The finding of 
impaired behaviour and memory deficits in GFRA2 
knockout mice further supports this theory.19 GDNF, 
which preferentially binds to GFRA1, and neurturin have 
been studied extensively for their neuroprotective 
potential in Parkinson’s disease models, and clinical 
trials in patients with Parkinson’s disease have been 
done by delivery of GDNF and neurturin as purified 
proteins or by viral-vector-mediated gene delivery to the 
brain.20–22 Although none of these proteins have shown 
efficacy in clinical trials, the delivery of GDNF family 
ligands to the brain was safe and provides hope 
that modified gene therapy approaches to boost 
GFRA2/neurturin signalling could be developed and 
tested in patients with sporadic FTLD or FTLD associated 
with mutations in GRN. 

Our study did not identify genome-wide significant 
associations with age at disease onset. Variability in the 
clinical presentation of FTLD and the subjective nature of 
defining disease onset might have contributed to this 
absence of association, especially since 40 clinical centres 
contributed data. The focus on unrelated symptomatic 
patients as opposed to extended families, in which a 
smaller number of genetic factors are expected to 
contribute to disease onset, might have further restricted 

our ability to identify significant associations. A previous 
study11 in four large families reported a 13-year decrease in 
onset age for carriers of the TMEM106B risk allele; 
however, no association with age at onset was noted for 
TMEM106B in our study.

Our study has several limitations. First, only 
symptomatic unrelated GRN mutation carriers were 
included in the analysis. Individual GRN families were 
generally small with few symptomatic and informative 
asymptomatic carriers available, which restricts the ability 
to perform family-based studies. Second, since patient 
samples were collected in various countries, population 
stratification could bias the results. To address this issue, 
we combined publicly available control genotype data 
with newly generated genotypes from control individuals 
ascertained in Italy and Spain, allowing each patient to be 
matched to three controls from the same country, 
followed by standard methods to correct for any 
remaining bias. Detailed analysis at the newly identified 
putative GFRA2 locus across geographical populations 
showed consistent ORs associated with the lead variant 
(rs36196656; appendix). Third, patients with FTLD-TDP 
type A without GRN mutations were included in the 
replication stage. Although this broadens the potential 
effect of TMEM106B and GFRA2 associations to patients 
with sporadic FTLD, our approach probably discounted 
several genetic modifiers specific to GRN mutation 
carriers. Finally, our functional studies were limited to 
GFRA2 and thus other genes in addition to GFRA2 might 
contribute to the observed association on chromosome 8.

In conclusion, two loci, TMEM106B and GFRA2, 
harboured genetic variants able to modify disease risk. 
These modifiers are likely to inform genetic counselling 
in families and could aid in future clinical trial designs. 
More importantly, identification of these modifiers in 
human beings supports TMEM106B-related and GFRA2-
related pathways as potential targets for treatment. 
Accordingly, increasing GFRA2 expression or signalling, 
or improving lysosomal function, or both, in FTLD-
relevant brain areas might be important areas for future 
research that could complement the current translational 
research efforts focused on increasing progranulin 
concentrations.23–25
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