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Abstract

Highly complex endophenotypes and underlying molecular mechanisms have
prevented effective diagnosis and treatment of autism spectrum disorder. Despite
extensive studies to identify relevant biosignatures, no biomarker and therapeutic
targets are available in the current clinical practice. While our current knowledge is still
largely incomplete, -omics technology and machine learning-based big data analysis
have provided novel insights on the etiology of autism spectrum disorders, elucidating
systemic impairments that can be translated into biomarker and therapy target
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candidates. However, more integrated and sophisticated approaches are vital to realize
molecular stratification and individualized treatment strategy. Ultimately, systemic
approaches based on -omics and big data analysis will significantly contribute to more
effective biomarker and therapy development for autism spectrum disorder.

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder

with a wide range of conditions characterized by repetitive behaviors, intel-

lectual disability, and deficits in social interaction, communication and

language skills. ASD has a high rate of comorbidity with other psychiatric

conditions including depression and anxiety.1,2 Despite its low life pre-

valence, the disease is highly heritable and estimated to have a median

prevalence of 62 in 10,000 worldwide.3

While human genetic studies found that a large number of genes are asso-

ciated with ASD, no major gene which accounts for more than 1% of the

cases was found4 indicating that ASD is not a single disorder with single

cause.5,6 In fact, ASD includes several diseases previously categorized as

separate disorders including autistic disorder, Asperger syndrome (AS) and

pervasive developmental disorder not otherwise specified (PDD-NOS).

In this regard, identifying molecular mechanisms and diagnosis/treatment

targets for ASD has been challenging due to the highly heterogenous genetic

and symptomatic architecture.

Omics technology has been a powerful tool to identify biomarkers

and pathways which could explain the etiology of the psychiatric disorders.

With the help of -omics technology, risk genes and proteins involved

in neuronal calcium signaling (CACNA1E, CACNA2D1 and CAMK2

alpha), dopaminergic neurotransmission (DRD2), glutamatergic neuro-

transmission (GRIA1, GRIA2, GRIK5, GRIN2B andGRM5), presynaptic

vesicle trafficking (PCLO and STXBP1) and proinflammatory cytokine

response (IFN gamma, CCL4 and CXCL8) have been implicated for

MDD.7–10 Diverse pathways such as angiogenesis and vascular system devel-

opment (ANGPT2 and STAB1), insulin secretion (INS, IRS1 and IRS2)

and endocannabinoid signaling (CNR1, DAGLA and DAGLB), as well

as ion channel and transporters (SCN2A and SLC4A1), and synaptic

component (RIMS1 and ANK3) were associated with BD.11,12 In SCZ,

susceptible pathways involved in glutamatergic neurotransmission and

synaptic plasticity (AMPAR, DPYSL2, DRD2, GNB1, GRIA1,
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GRIN2A, GRM3, GLUL, NEFL, NEFM, SRR and VDAC), neuronal

development (CTNNA1, GPM6A, SOX2OT), calcium channel

(CACNA1C, CACNB2, CACNA11, CALM1, CALM2, CAMK2B,

CAMK2D, CAMK2G, PMCA4, S100A6, S100A12), chromatin regulation

(PU.1 and RPB2), and immune system and inflammation (alpha-defensins,

interleukins and COX2) were identified.13–16 In addition, several biological

pathways including calcium signaling (CAMKMT) and mitochondria-

related functions (PREPL, ATP5H, MT-CO1, MT-ND2, MT-ND6,

NDUFA2, NDUFS6, COX7A2 and COX7C) were found to be related

to anxiety disorders.17,18

Despite limitations by polygenicity, consequent variable disease symp-

toms and comorbidity with other psychiatric conditions, -omics studies have

identified valuable ASD biomarker and therapy candidates with the help of

data resources such as the Simon Foundation Autism Research Initiative

(SFARI) (https://gene.sfari.org/), the autDB (http://autism.mindspec.

org/autdb/Welcome.do) and the Autism Sequencing Consortium (ASC)

(https://genome.emory.edu/ASC/). Recent advances in big data processing

with computational algorithms further accelerate ASD research by helping

data integration and interpretation. Here, we present the state-of-the-art

progress made in -omics and big data studies, and discuss the future direc-

tions that will provide a breakthrough in the ASD biomarker and therapy

discovery.

2. Omics and big data studies of autism
spectrum disorder

2.1 Immune and inflammation pathways
Dysregulated immune system has been shown to highly contribute to

the autism-related neurodevelopmental and behavioral abnormalities.

Particularly, in utero immune system dysfunctions including maternal pro-

duction of autoantibodies reactive to fetal brain, altered immunoglobulin

levels and innate/adaptive immune cell response have been suggested to play

a critical role in the etiology and pathology of ASD.19 To support this,

numerous omics studies have provided evidence of immune dysfunction

and autoimmunity in ASD.

Gandal et al. integrated genomics and transcriptomics data of brain tissues

acquired from ASD and healthy individuals.20 They found that gene, iso-

form and non-coding RNA expression were significantly dysregulated in

several brain regions of ASD patients. The differential expression profiles
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enriched diverse immune-related pathways including inflammatory

response, response to cytokine, innate immune response and cytokine

production.

Gupta et al. analyzed transcriptome from postmortem human cortical

tissues corresponding to Brodmann Area 10, Brodmann Area 19 (BA19)

and Brodmann Area 44.21 The authors identified 12 co-expression modules

using weight gene correlation network analysis. The module upregulated in

autism patients significantly enriched activated microglial cells and multiple

immune pathways.

Voineagu et al. used transcriptomics to analyze postmortem frontal

and temporal cortex tissues from ASD and control cases.22 Genes involved

in immune response, inflammation, astrocyte and activated microglia were

upregulated in ASD cortices. These genes enriched a network module

highly related to autism disease status. Since further genomewide association

study (GWAS) enrichment analysis using published data did not enrich the

immune and glial module, the authors suggested the non-genetic etiology

for immune dysregulation in ASD.

Abnormal immune system in ASD may be also supported by comorbid-

ity with cancer. By analyzing electronic health record, young ASD adults

without intervention was shown to be at high risk for cancer development

by midlife.23 Genome-wide exome sequencing analysis showed that risk

genes associated with immune system including ERBB2IP (involved in

NF-kB signaling, proinflammatory cytokine secretion and TGF beta signal-

ing) and PAX5 (involved in B cell development, leukemia, acute lympho-

blastic leukemia and Wnt signaling pathway) are shared between ASD and

cancer.24 Fores-Martos et al. performed transcriptomics meta-analysis

and found that a number of genes related to immune system (CDK2,

CDKN1A, COL4A1, COL4A2, DDIT4, F2R, IL4R, ITGA5, MYC,

NFKB1 and VEGFA) and oxidative stress (ATP5F1, ATP5J, ATP50,

COX7B, CYC1, DLD, OGDHL, PFKM, NDUFAF1, NDUFB2,

NDUFB6, NDUFV1 and UQCRFS1) were commonly regulated between

ASD and several types of cancer cases.25

Redox proteomics analysis identified altered protein oxidation profiles in

blood plasma of autistic children.26 The study found that two carbonylated

plasma proteins, Ig kappa chain C and complement component C8 alpha

chain, were significantly higher in autistic patients than healthy controls.

Protein carbonylation is an irreversible post-translational modification

induced by reactive oxygen species. Elevated levels of carbonylated immu-

noglobulin and complement in the study indicated activated oxidative stress

and autoimmune response in ASD.
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Momeni et al. performed blood plasma proteome profiling in children

with ASD.27 They found that children with ASD had significantly higher

levels of complement factor I, a protease for complement protein C3b. In

line with this, C3f, a cleaved C3b, and its fragment C3f-des-arginine levels

were found to be elevated in ASD children compared to healthy controls.28

Urinary proteomics analysis revealed the differential excretion of

kininogen-1 (KNG1), IgG1 heavy chain variable region and mannan-

binding lectin serine protease-2 (MASP2) isoform-2 precursor between

ASD and typically developing children.29 KNG1 is a precursor protein

for high-molecular-weight kininogen that is suggested to play a role in

the inflammatory disorders by stimulating cytokine and chemokine secre-

tion.30 MASP2 activates complement system by cleavaging the compon-

ents such as C2 and C4.31 Thus, the findings supported a crucial role of

complement system in ASD.

Junaid et al. used two dimensional gel electrophoresis followed by

proteomics identification and direct DNA sequencing of frontal lobe gray

matter obtained from ASD patients and controls.32 The authors identified

a single nucleotide polymorphism (SNP) in glyoxalase I (GLO1) gene which

causes Ala111Glu substitution in the protein sequence. GLO1 is mainly

involved in methylglyoxal detoxification and oxidative stress. It was also

shown to be associated with other psychiatric disorders such as anxiety

disorders and depression.33–35 The study revealed that the GLO1 poly-

morphism results in reduced protein activity and methylglyoxal-derived

advanced glycation end product accumulation which may affect ASD-

susceptible pathways such as cell growth and differentiation.36,37

Vogel Ciernia et al. used a mouse model of maternal allergic asthma

(MAA) which induces ASD-like behaviors in offspring.38 Using microglial

fraction isolated from the offspring, they performed whole genome bisulfite

sequencing and RNA sequencing to investigate DNAmethylation and gene

expression, respectively. Differentially methylated regions were associated

with a number of cytokine and chemokine-mediated immune pathways

and transcription factor binding motifs for early microglial development

and immune activation including runt-related transcription factor 1

(RUNX1), PU.1, interferon regulatory factor 8 (IRF8), nuclear factor

kappa-B (NF-kB) and MAF BZIP transcription factor B (MAFB). In addi-

tion, voltage-gated ion channel genes involved in neuronal connection

regulation and microglia sensitivity to environmental signals were differen-

tially expressed between MAA and control mice. The study suggested that

maternal immune activation during pregnancy can contribute to ASD

susceptibility by affecting fetal synaptic function and development.
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2.2 Synapse and neurodevelopment
The ultimate culprit of ASD is more likely to be dysregulated neu-

rodevelopmental process during gestation and early postnatal stage. The

resultant functional and structural impairment at the synapse can cause

cognitive and psychological dissonance.

Multiple synaptic features such as synaptic vesicle trafficking, neurotrans-

mitter release, GABAergic transmission, and balance between excitatory and

inhibitory synaptic transmission were found to be impaired in ASD.39 Also,

abnormalities in dendritic spine density/length, branching and morphology

have been extensively associated with ASD.40

De Rubeis et al. performed whole exome sequencing and integrated

several datasets for de novo, inherited and case-control variations, and de

novo missense variants.41 The study showed that genes affected in ASD

are highly enriched for synaptic networks and chromatin remodeling.

Several chromatin regulators have been shown to be essential for neural

development processes including neural progenitor proliferation, migration,

differentiation, synaptogenesis and synaptic pruning.42 Thus, the findings

supported synaptic connectivity and plasticity alterations in ASD.

Callaghan et al. performed whole genome sequencing using whole

blood of ASD probands.43 The authors identified five de novo subject-

specific damaging variants using computational prioritization based on

predicted damage, population frequency, literature evidence and phenotype

concordance. The variants included two novel de novo variants of SCN2A,

a well-documented ASD gene.44 SCN2A encodes voltage-gated sodium

channel Nav1.2 which is expressed in the axon initial segment. SCN2A

was shown to be important for action potential initiation and propagation.45

Integrated genomics and transcriptomics analysis by Pain et al. identified

14 differentially expressed genes between ASD and control cases.46 The

authors found that the protein disulfide-isomerase A6 precursor (PDIA6)

involved in protein folding was significantly downregulated in blood of

ASD individuals. Gene sets including synaptic vesicle, presynapse, abnormal

axon guidance and early cortical development represented nominal

significance.

Sanders et al. analyzed de novo CNVs using the Simons Simplex

Collection (SSC) cohort, the resource of the SFARI.47 They integrated

published de novo CNV data from the Autism Genome Project, and exome

sequencing data from the SSC and the ASC. The integrated analysis con-

firmed previously reported de novo CNV loci, and identified 65 ASD genes.

66 Dong Ik Park



Protein-protein interaction (PPI) analysis further revealed that the ASD

genes enrich interconnected networks for synapse and chromatin regulation.

Grunwald et al. performed transcriptomics analysis using human induced

pluripotent stem cells (iPSCs) and -derived neurons generated from dermal

fibroblasts of ASD and SCZ patients.48 While iPSCs-derived neurons from

three ASD patients shared a small number of dysregulated genes, trans-

criptome profiles were discriminative between the ASD and SCZ patients.

The authors found that several genes linked to neural development such as

SHH, PTCH1, GREM1, FEZF1 and FEZ-AS1 were significantly altered in

the ASD iPSCs-derived neurons compared to those from healthy controls.

Single cell transcriptomics was used to analyze gene expression profiles

from doublecortin expressing immature neurons in the dentate gyrus of

mouse hippocampus.49 While the study identified several subpopulations

with distinct developmental stages, genes positively associated with neuronal

maturation progression from stem-like to neuron-like cells were enriched

for autism-related gene sets. This suggested that autism development may

be attributed to gene and network dysregulation involved in neuronal

maturation process during neurogenesis.

DeRosa et al. examined temporal transcriptome changes during cortical

neuron differentiation of iPSCs derived from peripheral blood mononuclear

cells (PBMCs) of individuals with idiopathic ASD.50 The authors compared

transcriptome differences between two time points, early (DIV 35) and

later (DIV 135) developmental stages. Differentially regulated genes in early

stage exhibited expression changes in opposite direction in later stage,

indicating dramatic gene expression changes during development. Several

biological processes including synaptic activity, calcium signaling and neu-

ronal cell migration were found to be dysregulated in the early stage of ASD

iPSCs. Consistent with transcriptomics data, neuronal process migration,

spontaneous neural spiking activity and calcium transients were found to

be impaired.

Pinto et al. identified 36 pathogenic CNVs in ASD-affected individuals.51

The CNVs implicated genes linked to ASD-related neurodevelopmental dis-

orders such as CHD2, HDAC4 and GDI1. Several synaptic processes includ-

ing cell projection, neural development, axonogenesis and neuronal synapse

were enriched by rare exonic gene deletions. Integrative analysis with de

novo loss-of-function SNVs from four ASD exome sequencing studies fur-

ther revealed the convergent pathway enrichment in neuronal development

and axon guidance as well as microtubule associated protein kinase (MAPK)

signaling and chromatin modification/transcriptional regulation.
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Hu et al. performed quantitative trait analysis using ASD patient sub-

groups based on the Autism Diagnostic Interview-Revised (ADI-R) scores

from five symptom categories including spoken language skills, non-verbal

communication, play skills, social development and insistence on same-

ness.52 Quantitative trait locus associated with distinct ASD subgroups

enriched several cellular pathways including neurogenesis, axogenesis and

long-term synaptic potentiation. Network analysis using genes associated

with intronic SNPs identified hubs such as HTR4 and GCH1, indicating

a role of serotonergic system in the ASD etiology.

Bralten et al. performed GWAS to identify SNPs associated with autistic

traits.53 The authors measured autistic trait scores from Dutch general

population using self-report questionnaire. They used GWAS data from

Psychiatric Genomics Consortium autism group to find overlaps between

genetic variants for ASD susceptibility and three autistic traits (childhood

behavior, rigidity and attention to detail). A number of neurite

outgrowth-related genes including MET showed a significant association

with rigidity trait.

Using exome sequencing, O’Roak et al. identified recurrent de novo

mutations of chromodomain helicase DNA binding protein 8 (CHD8) from

ASD probands.54 CHD8 is a chromatin remodeling factor which regulates

Wnt signaling pathways.55,56 CHD8 deficiency was shown to impair axon

and dendrite growth, and delay cortical neuron migration.57 In addition,

CHD8mutations have been strongly associated with clinical features includ-

ing macrocephaly, speech delay and psychopathology.58

Sugathan et al. performed RNA-seq and ChIP sequencing using iPSC-

derived human neural progenitor cells with CHD8 reduction.59 Several

critical pathways including synapse, axon guidance and neuron differentia-

tion were enriched by downregulated genes. Furthermore, most CHD8

binding sites were found to be active transcription start sites, supporting a

crucial role of CHD8 in chromatin and transcription regulation.

Genomic DNA methylation study using blood specimens examined

genetically defined ASD patient subgroups with 16p11.2 deletion or

with CHD8+/� variant.60 Both genotypes have been strongly associated

with behavioral and neurodevelopmental deficits of ASD patients.58,61

Methylated gene profiles obtained from the subgroups were able to distin-

guish the subgroups from undefined individuals, showing that ASD sub-

group stratification could provide more sensitive and specific diagnostics.

Neurexin (NRXN) is a neuronal presynaptic cell adhesion molecule

which is crucial for synaptic function and development.62,63 One study

68 Dong Ik Park



identified CNV losses of chromosome 2p16 which results in NRXN1 cod-

ing exon deletion in families with ASD individuals.64 Zahir et al. identified

de novo NRXN1-alpha deletion from a ASD patient.65 Feng et al. identi-

fied two putative missense structural variants in NRXN1 beta gene from

several ASD patients.66 Lam et al. performed single cell RNA-seq analysis

using human iPSC-derived neural stem cells and differentiated cells gener-

ated from autism patients carrying bi-alleic NRXN1-alpha deletion.67 The

authors found that NRXN1-alpha deletion resulted in astroglia generation,

depressed calcium signaling and impaired excitatory neuron maturation.

Single nucleus RNA sequencing using ASD patient cortical tissues rev-

ealed that genes important for synaptic function and brain development such

as NRXN1, STX1A, SYN2, TCF25, SOX5 and RBFOX3 are differen-

tially regulated in upper-layer excitatory neurons, microglia and protoplas-

mic astrocytes.68 The authors examined correlation of cell type-specific gene

expression changes with the clinical ASD symptom severity. Transcriptomic

changes in L2/3 neurons andmicroglia were found to be the most predictive

of symptom severity. By comparing single cell profiles, they further revealed

that cortico-cortical projection neurons across layers are commonly affected

in multiple patients, suggesting that upper-layer cortical circuit dysfunction

may be relevant to ASD pathology.

Provenzano et al. used microarray to analyze hippocampal transcriptome

of two ASD mouse models, BTBR T+ Itpr3tf/J (BTBR) and Engrailed-2

knockout mice, to identify conserved ASD molecular signatures.69 While

more than 150 genes were commonly expressed between the two groups,

differentially expressed gene profiles common to both mouse models

enriched biological processes such as regulation of ion transmembrane trans-

port and synaptic transmission.

Parikshak et al. performed ribosomal RNA-depleted RNA sequencing

using postmortem human frontal cortex, temporal cortex and cerebellum of

ASD and control subjects.70 Significant alterations in long non-coding

RNAs (lncRNAs) expression and neuron-specific alternative splicing were

found in ASD cortices. In addition, multiple lncRNAs were predicted to

interact with microRNA-protein complexes that are differentially regulated

between control and ASD cortices, and with fragile X mental retardation

protein (FMRP) that is strongly associated with intellectual disability and

ASD.71 The study revealed that cortical patterning between the frontal

and temporal cortices were attenuated in ASD. In addition, transcription

factor binding site enrichment analysis further found that SOX5, a mamma-

lian corticogenesis regulator, might be involved in cortical patterning
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dysregulation in ASD. The co-expression network analysis showed that age-

related microglial and synaptic function were changed, suggesting that ASD

genetic risks may affect cortical gene expression.

Lee et al. performed transcriptomics analysis using zebrafish embryos and

larvae treated with valproic acid as a model of ASD.72 They found that ASD-

associated genes such as ADSL, MBD5, SHANK3 and TSC1b were differ-

entially regulated between the control and drug-treated larvae. Several

synapse-related processes including generation of a signal involved in cell-

cell signaling, synaptic transmission and transmission of nerve impulse were

enriched for genes altered in a concentration-dependent manner. Therefore,

the authors suggested that valproic acid-treated zebrafish can be a promising

alternative animal model for ASD research.

Multiple clustering algorithms based on scores from the ADI-R were

used to identify ASD proband subgroups.73 While the clustering analysis

identified four phenotype clusters with distinct behavioral deficits, the

authors further performed DNA microarray using lymphoblastoid cell

lines from three of the subgroups (groups with severely impaired language,

mild phenotype and savant skills).74 Differentially expressed genes in

severely language-impaired subgroup were involved in biological processes

including circadian rhythm and apoptosis/cell death of neuroglia, astrocytes

and neurons. Interestingly, differentially expressed genes common to all three

ASD subgroups were found to be in uncharacterized intronic or intergenic

regions associated with cellular response to androgen. Seven of the transcripts

showed significant expression changes in response to dihydroxytestosterone,

suggesting that the transcripts responsive to androgen may be related to a

higher rate of ASD prevalence in males.

Transcriptomics and proteomics profiling of the BTBR mouse hippo-

campus identified several differentially regulated genes and proteins such

as blood-brain-derived neurotrophic factor (BDNF) and SH3 and multiple

ankyrin repeat domains 3 (SHANK3).75 The altered genes and proteins

represented several pathways including axon guidance, endocytosis, and

regulation of actin cytoskeleton, indicating synaptic dysfunction in the

BTBR mouse hippocampus.

Broek et al. performed targeted proteomics analysis using postmortem

brain tissues collected from ASD patients and typical controls.76 The authors

found that proteins involved in axon myelination and synaptic regulation

were oppositely regulated between prefrontal cortex and cerebellum. The

study indicated that distinct brain regions can be differentially affected

in ASD.
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Meta-analysis of 14 different studies including more than 2700 partici-

pants found that peripheral BDNF levels are significantly higher in ASD

patients compared to controls.77 Despite inconsistent reports on BDNF

levels, the results concluded that peripheral BDNF alteration can be signif-

icantly implicated in ASD.

Synaptic interactome studies using co-immunoprecipitation (Co-IP)

coupled mass spectrometry-based proteomics identified key PPIs. One

interactome study with developing mouse telencephalon synaptosome rev-

ealed that p140Cap protein interacts with more than 300 proteins highly

associated with multiple psychiatric disorders including ASD, SCZ, and

BD.78 Another study using developing mouse neocortical synaptosome

found that MET receptor tyrosine kinase interaction networks include sev-

eral key synaptic proteins such as SHANK3, synaptic Ras GTPase-activating

protein 1 (SYNGAP1) and glutamate ionotropic receptor NMDA type sub-

unit 2B (GRIN2B).79 Mejia et al. immunoprecipitated tuberous sclerosis 1

(TSC1) interactome in mouse neuro2a cells and primary rat cortical neu-

rons. The authors found a novel interaction between huntingtin associated

protein 1 (HAP1) and TSC1. Furthermore, HAP1 was found to regulate

mammalian target of rapamycin complex 1 (mTORC1) signaling and

axon-dendrite morphogenesis/positioning in brain.80

Baucum et al. performed Co-IP followed by quantitative proteomics

to identify CaMKII interactome from mouse forebrains.81 The study

employed the CaMKIIα T286A knock-in mutation which results in

reduced CaMKIIα and β phosphorylation. The mutation was found to

alter CaMKII interaction with ASD-related synaptic scaffolding proteins

including SHANK3, disk large-associated protein 2 (DLGAP2) and

SYNGAP1. Since dysregulated CaMKII signaling has been linked to

Angelman syndrome which exhibits features overlapping with ASD, the

authors concluded that altered PPIs in CaMKII networks may contribute

to the ASD etiology.

2.3 Mitochondrial energy metabolism
Mitochondria are key organelles for cellular energy generation. Most energy

produced in the brain is consumed on synaptic mechanisms mediating syn-

aptic transmission.82 Mitochondria were also shown to mediate critical neu-

rodevelopmental processes with a high energy demand such as genetic

reprogramming during neuronal differentiation.83 It has been shown that

mitochondria are transported to the active synapse and support dendritic
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spine density and synaptogenesis84 and synaptic transmission.85 Thus, mito-

chondrial impairment is strongly implicated in dysregulation of synaptic

vesicle trafficking, neurotransmitter release and concomitant synaptic trans-

mission in ASD.

Gordon et al. analyzed transcriptome from cortices and hippocampi of

three mouse lines, Df(h15q13)/+, Df(h22q11)/+ and Df (h1q21)/+, carry-

ing ASD and SCZ-associated mutations.86 While several cortical and

hippocampal co-expression networks were found to be shared among the

three mouse models, one cortical module associated with neuronal mito-

chondria and firing rate showed gene expression patterns overlapping with

transcriptomic changes in ASD and SCZ postmortem human brains. The

common gene expression patterns in mice and humans suggested that

neuronal bioenergetics can be a crucial mechanism for ASD.

He et al. analyzed 11 transcriptomics datasets of different human tissues

from ASD and control individuals.87 Downregulated genes in ASD patients’

brain and blood specimens significantly enriched several pathways including

mitochondria-related functions and oxidative phosphorylation. The authors

further analyzed eight transcriptomics datasets from ASD rodent models to

validate the findings from the human subjects. While all differentially

expressed genes in the animal models were found to be upregulated, similar

biological processes were enriched between the ASD animal and humans.

Transcriptomic meta-analysis mentioned in Section 2.1 also found that a

number of genes in mitochondrial processes including oxidative phos-

phorylation, mitochondrial electron transport and ATP synthesis were

downregulated in ASD.25

While Broek et al. identified differential synaptic protein expression

patterns between prefrontal cortex and cerebellum as mentioned in

Section 2.2, the authors also found that creatine kinase B-type (CKB) levels

were altered in ASD.76 Creatine kinases play a central role in energy storage

and distribution by catalyzing phosphate transfer between ATP and creatine

phosphate. CKB was shown to affect formation and maintenance of mossy

fiber connections in the hippocampus.88 Glial CKBwas associated with high

energy demands related to ion homeostasis and TCA cycle metabolite/

neurotransmitter trafficking with neurons.89 Thus, altered CKB levels in

ASD brains suggest that disturbed CKB-mediated energy metabolism

may be involved in synaptic dysfunction.

Shen et al. performed proteomics analysis using PBMCs of autistic and

healthy children.90 The authors reported that 17 proteins involved in carbon

metabolism, pyruvate metabolism, TCA cycle and respiratory electron

transport were significantly altered in the ASD PBMCs.
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West et al. interrogated blood plasma metabolome of ASD and healthy

children.91 The authors revealed that mitochondrial metabolites including

isoleucine, glutaric acid, aspartate, glutamate and TCA cycle-associated

molecules (citric acid and succinic acid) are significantly altered in children

with ASD. Levels of dehydroepiandrosterone sulfate which affects oxidative

energy metabolism by altering mitochondrial respiratory chain complex

contents and activities92,93 were found to be different between autistic

and healthy children.

Metabolomics analysis of the prefrontal cortex gray matter obtained

from ASD individuals showed that significantly altered metabolites enrich

glutathione metabolism and TCA cycle.94 Transcriptomics data analysis in

the human prefrontal and temporal cortices further found that genes for

ASD-related metabolites were elevated in autistic individuals.

Blood plasma metabolome was analyzed in healthy controls and children

with ASD, idiopathic-developmental delay and Down syndrome.95 The

study revealed that metabolites involved in one-carbon metabolism (serine

and glycine) and TCA cycle (alanine and ornithine) were significantly

elevated only in children affected by ASD. Since serine and glycine are ago-

nists for NMDA and glycine receptors, respectively, the results suggest the

close relationship between energy metabolism and synaptic activity.

2.4 Lipid transport and metabolism
Lipids are essential components of cellular membranes and vesicles.

Most cholesterol in the brain are required in myelin sheath, neurons and

astrocytes. Particularly, more than 70% of rodent brain cholesterol is in

myelin,96 indicating its major role in synaptic transmission regulation.

Lipid rafts which contains high concentration of cholesterol and

glycosphingolipids were shown to play a major role in maintenance of syn-

apses and dendritic spines.97 Lipids are also crucial for brain development.

Mammalian brain lipids including cholesterol, phospholipids, cerebrosides,

sulfatides and gangliosides highly increase during development. Several

studies have demonstrated a role of lipid transport and metabolism in

CNS development.98,99 Therefore, perturbed lipid homeostasis can directly

hamper critical synaptic functions which can lead to cognitive, behavioral

and emotional impairment in ASD.

Gudenas et al. re-analyzed previously acquired RNA-seq data to identify

differentially expressed lncRNAs in ASD brain cortices.100 More than 200

lncRNAs were found to be altered in ASD cortices. Five among the iden-

tified lncRNAs were neighboring and antisense to ASD risk genes including
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RAPGEF4, DLX6, STXBP5, KLC2 and DMXL2, suggesting that the

lncRNAs may be cis-regulatory elements. Furthermore, differentially

expressed lncRNAs enriched functional expression modules related to lipid

transport along with synaptic transmission, immune response, drug response

and nucleic acid metabolism, indicating a role of lipids at the nexus of other

essential pathways.

Corbett et al. performed proteomics analysis using sera obtained from

autistic and healthy children.101 The authors separated the autism children

into low-functioning autism (LFA) and high-functioning autism (HFA)

subgroups based on intelligence quotient. While apolipoprotein B100

precursor (APOB100), complement factors and fibronectin 1 isoform 1

preproprotein (FN1) levels were altered in general autistic children, com-

parison between the autism subgroups revealed that apolipoprotein A-IV

(APOA4) and APOB100 levels were significantly lower in LFA than

HFA sera. Since most brain cholesterols are locally produced by glial

cells,102 apolipoprotein-mediated lipid transport can play a crucial role in

diverse neuronal pathways.

Yang et al. analyzed blood sera of Han Chinese children with ASD

to identify peptide biomarkers.103 The authors found that eight peptide peaks

were higher in ASD than control sera. The peptides were found to be derived

from proteins such as fatty acid binding protein 1 (FABP1) and apolipopro-

tein C-I precursor (APOC1) involved in lipid metabolism regulation.

Steeb et al. usedmultiplex immunoassay profiling and proteomics to ana-

lyze sera of adults with AS.104 The authors found that several lipid transport

and metabolism-related proteins including apolipoprotein A1 (APOA1),

apolipoprotein E (APOE), apolipoprotein C2 (APOC2), adiponectin

(ADIPO), fetuin-B precursor (FETUB) and D-glucuronyl C5-epimerase

(GLCE) were altered specifically in female AS patients. In addition, sex

hormone binding globulin (SHBG) expression patterns between men and

women were found to be opposite. SHBG is a major transporter of sex

steroids such as testosterone and other androgens which were suggested

to contribute to the ASD development.105 Based on their results, the authors

demonstrated that gender subgroup stratification may be required in the

studies of AS biomarkers and drug targets.

Wang et al. found the serum metabolomic profile differences between

autistic and healthy individuals.106 The authors revealed that lipids including

sphingosine 1-phosphate (S1P), docosahexaenoic acid (DHA) and doco-

sapentaenoic acid were significantly altered in ASD cohorts. S1P and

74 Dong Ik Park



DHA were significantly correlated with the autism behavior checklist

(ABC) score, representing biomarker candidates for ASD diagnosis.

2.5 Gut microbiome
The microbiota-gut-brain axis coordinates communication and interaction

between enteric and central nervous system, therefore affecting emotional

and cognitive functions in the host. Gut microbes provide neuroactive

compounds and immune modulators including serotonin, dopamine,

γ-aminobutyric acid (GABA), acetylcholine, histamine and short-chain

fatty acids (SCFAs). In addition, gut microbiome was shown to regulate

blood-brain barrier formation and hypothalamic-pituitary-adrenal stress

response.107 increasing evidence strongly suggests that abnormal gut micro-

biome could serve as one of major contributors to ASD development.108,109

Various gastrointestinal symptoms in autistic individuals also support a

significant link between gut microbiome and ASD.110

de Theije et al. analyzed microbiota composition of caeca samples from

mouse pups exposed to in utero valproic acid.111 Pyrosequencing analysis

revealed that prenatal valproic acid exposure resulted in transgenerational

gut microbiota changes in the offspring. Microbiota differences of drug-

exposed male offspring were significantly correlated with increased caecal

butyrate and decreased ileal serotonin levels.

Ming et al. performed metabolomics analysis to identify urinary

biosignatures for ASD. They found that microbial metabolites including

2-(4-hydroxyphenyl)propionate, taurocholenate sulfate, 3-(3-hydroxy-

phenyl)propionate and 5-aminovalerate (5-AV) were significantly altered

in children with ASD.112

Yap et al. analyzed urinary metabolite profiles of ASD patients using
1H NMR spectroscopy.113 The authors found that gut microbial and

mammalian cometabolites including dimethylamine, hippurate and

phenyacetylglutamine were significantly different between ASD and control

subjects. The metabolites were suggested to be involved in interconnected

pathways among gut microbiome, energy metabolism and methylamine,

suggesting the systemic effects of gut microbiome.114

Kaluzna-Czaplinska interrogated urinary metabolome profiles to find

organic acid level differences between autistic and control children.115

The author suggested that gut bacterial metabolism might affect several

metabolites including hydroxyphenylacetate and hippurate.
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Emond et al. examined urinary metabolome to investigate biomarker

candidates for ASD.116 Nineteen metabolites including succinate, glycolate,

hippurate, 3-hydroxyphenylacetate, hydroxyacetate, 1H-indole-3-acetate,

phosphate, palmitate, stearate and 3-methyladipate were found to be

discriminative between autistic and healthy children, thus representing

potential biomarkers for ASD diagnosis. Altered levels of microbe-derived

metabolites such as hippurate, 3-hydroxyphenylacetate, 3-hydroxy-

hippurate and 1H-indole-3-acetate implicated significant effects of gut

microbiome on the host metabolome.

De Angelis et al. analyzed fecal metabolome of children with PPD-NOS

and ASD.117 The authors found that beneficial metabolites such as free

amino acids (FAAs) and SCFAs were significantly decreased in feces of

PDD-NOS and ASD compared to healthy individual. They also revealed

significant correlations between metabolically active bacteria abundance

and metabolites levels. Faecalibacterium, Ruminococcus and Bifidobacterium

genera were positively correlated with total SCFA levels. Total FAA levels

were correlated with Bacteroides genus.

Sharon et al. performed metabolomics using colon contents from

mice harboring ASD human gut microbiome.108 Adult offspring from mice

transplanted with gut microbiome of ASD patient donors showed signifi-

cantly altered autistic behaviors, and microbiome and metabolome profiles.

Weak GABAA receptor agonists including 5-AV and taurine were found to

be lower in mice with ASD microbiome. 5-AV treatment significantly

decreased cortical neuron excitability in BTBR mice. Taurine treatment

was found to delay inhibitory neurotransmission switch in response to

GABA exposure in primary rat cortical neurons. Therefore, the study

suggested that neuroactive metabolite alterations by ASD gut microbiome

may affect the host neuronal activity. Transcriptomics analysis using mouse

prefrontal cortex and striatum further revealed differential expression of

diacylglycerol lipase beta which is required for axonal growth and guid-

ance.118 In addition, alternative splicing events relevant for several ribosome

binding protein targets were significantly altered in ASD mouse brains.

Kang et al. analyzed fecal microbial metabolites in children with ASD

using 1H NMR spectroscopy.119 The authors found that isopropanol,

p-cresol and GABA concentrations were significantly altered in ASD

compared to healthy individuals. In addition, they showed that Fischer dis-

criminant analysis model using caprate, nicotinate, glutamine, thymine and

aspartate can separate ASD from control cases, therefore suggesting that the

metabolite group may be used as biomarkers.
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2.6 Ubiquitin-proteasome system
The ubiquitin-proteasome system was shown to control synaptic structure

and activity by regulating synaptic protein composition that is important for

synaptic formation and maintenance such as SNARE complex proteins,

AMPAR and PSD95.120,121 Thus, perturbed proteolysis processes including

ubiquitin mis-conjugation to the protein of target and subsequent failure

of proteasomal degradation can lead to synaptic dysfunction, implicating a

crucial role of the defective machinery in ASD.

Yi et al. found the link between ubiquitin andWnt signaling pathways in

ASD. The authors compared published databases for ubiquitin protein

ligase E3A (UBE3A) interactome and Wnt signaling regulators.122 While

multiple UBE3A interacting proteins were found to be negative Wnt

signaling regulators, they quantitated ubiquitinated peptide profiles to

identify UBE3A substrates. They revealed that ASD-associated de novo

UBE3AT485S mutation depleted the original UBE3A interactors and sub-

strates including proteasome 19S regulatory subunits (PSMD1, PSMD2,

PSMD11, PSMC2, and PSMC5) and 20S core subunits (PSMA1,

PSMA2, and PSMB1).

Glessner et al. interrogated whole genome CNVs which confer an ASD

risk.123 The authors found that neuronal development-associated genes

such as NRXN1, CNTN4, ASTN2 and NLGN1 had a higher CNV

frequency in ASD compared to control cases. Interestingly, CNVs associ-

ated with ubiquitin ligase genes including UBE3A, PARK2, RFWD2

and FBXO40 were found only in ASD patients, suggesting a role of

ubiquitin-proteasome system for ASD susceptibility.

2.7 Epigenetic regulation
Epigenetic regulation including DNA CpG methylation and histone mod-

ifications determines chromatin architecture, transcription factor accessibil-

ity and gene expression levels. The important role of epigenetic regulation

has been highlighted in ASD. Multiple ASD-associated epigenetic changes

in PRRT1, FAM181A, CHFR, AURKA, MAP8KIP3, NALP1L5, TET,

MECP2, DNMT1 and MTHFR were suggested to affect crucial synaptic

and neurodevelopmental processes.124

Whole exome sequencing using whole blood obtained from 10-year-old

autistic male identified a de novo mutation in HIST1H1E which encodes

histone H1.4 or H1E proteins involved in heterochromatin formation.125

The authors performed a systemic review using autism genetics databases
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including SFARI and autDB. The analysis revealed that 42 genes related to

ASD are directly associated with epigenetic machinery.

Ladd-Acosta et al. examined global DNA methylation profiles using

postmortem brain tissues including dorsolateral prefrontal cortex, temporal

cortex and cerebellum from autism and control cases.126 Four differentially

methylated regions near PRRT1, 11orf21, ZFP57 and SDHAP3 genes were

found commonly across three brain regions. Ellis et al. analyzed DNA meth-

ylation using postmortem BA19 brain tissues from autistic and control

subjects.127 The authors found that several CpH sites were hypermethylated

in autism brains. Interestingly, 10 histone methylations were only enriched in

brains, but not in lymphoblastoid cell lines from the corresponding patients,

indicating that epigenetic dysregulation can be tissue-specific.

2.8 Big data analysis with machine learning approach
Big data analysis empowered by machine learning methods has achieved

promising advances in ASD research. Machine learning based on large-scale

omics and clinical diagnosis data has assisted studies aimed at more precise

diagnosis.

Gong et al. applied the KF algorithm to predict new ASD susceptibility

genes.128 The algorithm used datasets generated from biomedical text

mining. The authors identified a number of ASD candidate genes for several

members of orthodenticle homeobox, 5-hydroxytryptamine receptor

(HTR), GABA receptor (GABAR) and protocadherin (PCDH).

Jiao et al. applied machine learning techniques to assess whether

SNPs can predict ASD symptom severity.129 They analyzed 29 SNPs of nine

ASD-associated genes in ASD children subgroups with different symptom

severity. SNP-based diagnostic models were generated using three different

methods including decision stumps, alternating decision trees and FlexTrees

algorithms. The study found the SNP rs878960 in GABRB3, a gene

encoding GABAR subunit beta-3, to be predictive for symptom severity.

Thus, the authors suggested that SNPs in ASD genes can be used as accurate

classifiers for ASD symptom severity.

Oh et al. used the published microarray data obtained from peripheral

leukocytes of ASD patients.130 The authors established a predictive diagnosis

model based on 19 differentially expressed genes to distinguish autistic and

typically developing individuals. While the 19-probe set showed a high

accuracy to discriminate the two groups, pyruvate kinase muscle isozyme

involved in glycolysis was found to be the best discriminant.
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Xiong et al. used deep learning algorithms to compute a score for RNA

splicing by DNA variants in ASD.131 The authors analyzed whole genome

sequence of brain tissues from the Autism Tissue Program to identify causal

SNPs for splicing misregulation. They found that genes with predicted mis-

splicing were enriched in several ASD-relevant pathways including synaptic

transmission, neuron projection, mitotic cell cycle, embryonic development

and CNS development.

To predict functional and pathogenic de novo mutations in ASD,

Zhou et al. analyzed whole genome of ASD simplex families using deep

convolutional-network-based framework.132 Non-coding mutations in

ASD probands were predicted to affect brain-specific genes. In addition,

genes in synapse and chromatin-related clusters showed similar expression

patterns with those with high-impact proband mutations. Thus, the study

discovered the causal contribution of non-coding mutations in the ASD

etiology.

3. Conclusions and future directions in the biomarker
and therapy discovery based on -omics and big
data analysis

While -omics and big data analysis have profoundly advanced

ASD research by providing information on affected biosignatures and path-

ways (Fig. 1), none has been validated as reliable clinical biomarkers and

therapy targets. This may be the result of the current clinical diagnosis strat-

egy based on standard tests including the Diagnostic and Standard Manual

of Mental Disorders, the Childhood Autism Rating Scale, the ABC, the

Gilliam Autism Rating Scale, the ADI-R and the Checklist for Autism

in Toddlers. Since the standard tests are only based on phenotypic and

behavioral traits, underlying biological mechanisms need to be considered

for more precise diagnosis and treatment. Therefore, Research Domain

Criteria (RDoC) has been suggested to be an alternative framework for

biological classification system. The RDoC can address more biological

and functional domains related to ASD. For instance, Hennessey et al.

attempted to classify amygdala dysfunction in ASD using five RDoC

domains including Negative Valence Systems, Positive Valence Systems,

Cognitive Systems, Social Processes and Arousal and Regulatory

Systems.133 Systemic molecular profiling using -omics and big data analysis

will strongly assist RDoC-based diagnosis strategy.
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Fig. 1 The overview of biosignatures and pathways identified from -omics and big data analysis for autism spectrum disorder.



More research on ASD subgroup stratification based on molecular pro-

files is strongly required to overcome the current diagnostic and therapeutic

limitations. The current studies have used clinical phenotypes and character-

ized single genotypes to stratify the subgroups. However, stratification

efforts based on -omics and other big data are largely missing. The molecular

subgrouping will not only provide information on underlying mechanisms

specific to relevant subgroups, but also assist customized pharmacological

interventions. While effective treatment for ASD core symptoms has been

very challenging, several classes of drugs including atypical antipsychotics,

selective serotonin reuptake inhibitors, tricyclic antidepressants, anticon-

vulsants, NMDA receptor antagonists, acetylcholinesterase inhibitors,

psychostimulants, adrenergic alpha-2 receptor agonists and opiate antago-

nists have been shown to attenuate associated behavioral symptoms such

as hyperactivity, anxiety, repetitive behavior, aggression and self-injury.134

With the help of advanced machine learning methods, integrated multi-

omics data may further help to improve pharmacological treatment

efficiency.

Ultimately, there is an absolute necessity to establish the integrated

molecular guideline based on databases acquired from -omics and other bio-

logical measurements. The molecular guideline databases will significantly

advance clinical diagnosis and treatment of ASD.
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